Report of Diamond Grinding on Cells 7 & and 8 MnROAD Mainline Interstate Highway 1-94

Draft Final Report

Prepared by:

Bernard Igbafen Izevbekhai, P.E, M.Eng, MSISE, Research Operations Engineer, Minnesota Department of Transportation

November 2007

Published by:

Minnesota Department of Transportation Research Services Section 395 John Ireland Boulevard, MS 330 St. Paul, Minnesota 55155-1899

This report represents the results of research conducted by the author and does not necessarily represent the views or policies of the Minnesota Department of Transportation and/or the Center for Transportation Studies. This report does not contain a standard or specified technique.

Caveat

The authors and the Minnesota Department of Transportation and/or Center for Transportation Studies do not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to this report

ACKNOWLEDGEMENTS

Author expresses gratitude to Diamond Surface Incorporated (DSI) in general and Terry Kraemer Owner and Chief Executive of DSI in particular and for providing the actual grinding of Cells 7 and 8 and 37 and bearing all the grinding cost to facilitate this study. Acknowledgement s are also due to and Texas Department of Transportation, Minnesota Department of Transportation (Lead State)and Federal Highway Administration for participating in the transportation pooled fund TPF 5-(134) relevant to this study. Author is grateful to Larry Scofield Director of Environmental services ACPA for arranging all the field validation process and performing most of the Sound testing. Author is indebted to International Grooving and Grinding Association (IGGA) and American Concrete Paving Association (ACPA for their immeasurable roles in this study.

Bernard I Izevbekhai, P.E. Lead State Technical Contact Nov 2007

Executive Summary

With increased understanding of surface characteristics it was expedient re-examine on how diamond grinding process and performance can be improved to enhance quietness, safety and ride comfort. An attempt to define the scope without re-inventing the wheel led to a collaboration of Center for Quiet Safe and Durable Highways (SQDH) Purdue, Federal Highway Administration (FHWA), American Concrete paving Association (ACPA), International Grinding and Grooving Association (IGGA) towards a laboratory development of a quieter grinding configuration. It was determined at that juncture that MnROAD studies would create an opportunity to validate the Purdue results. Some meetings were held with IGGA local Minnesota and Concrete Paving Association of Minnesota towards this objective.

The study was posted as solicitation 1048 in the Transportation Pooled Fund (TPF website and responses were obtained from Mn/DOT (Lead state), TXDOT and FHWA (Mark Swanlund). It was subsequently cleared by FHWA and assigned TPF # (TPF 5-(134)... However, to fulfill the required 20% percent match for the Federal participation, some non-Federal source for a minimum of \$25,000 was required... ACPA and IGGA agreed to perform the Diamond grinding as an in-kind match. Mn/DOT developed a partnership agreement with ACPA pursuant to the diamond grinding. Mn/DOT made 2 cells available in MnROAD Mainline for this study. Subsequently ACPA requested to do a proof-of-concept at MnROAD Low Volume Road to increase the comfort level of performing unconventional grind before proceeding to the mainline. Mn/DOT provided cell 37 in the low volume loop for the proof of concept or initial validation test.

The proof of concept grinding was performed in the week of June 18 2007. Noise (OBSI) measurements were performed by Larry Scofield of ACPA and the texture, ride, and friction measurements were performed by Mn/DOT Concrete Research and MnROAD Operations. In the pooled fund meeting held on the 18th of July member states expressed the need to see the performance of the grinding configurations in full lane width as against the 2' test strips in the low volume road. The group agreed on the following points:

- The grinding of the mainline has to be done. Bernard and Ben Worel met with IGGA and fully explored the original option of industry grinding the mainline. Diamond Surface Incorporated (DSI) agreed to construct the cells at their expense. In consequence Mn/DOT elected to perform the Monitoring of the ground pavement.
- The scope of works includes monitoring of friction, noise, texture and ride quality. Development of a protocol for splash and spray will not be included in the scope of works. A consultant will be hired however to provide an advisory role. Consultant shall in the advisory role make recommendation for other research needs, perform statistical analysis on our data in relation to data from other surface characteristics initiatives.
- In this role the consultant will participate in meetings and render construction and periodic reports. Such a consultant will be proficient in surface characteristics work and should be knowledgeable in the interpreting analyzing data on texture, noise, ride and friction. Durability and benefit /cost will also be documented and reported.

The Proof of concept grinding validated the feasibility of producing the innovative grind at a production level. Although it was not a full width grinding exercise four test strips were created. TS1 was a flush grind and groove in one pass, TS2 was the flush grind and groove in 2 passes, TS3 was the conventional grind of 0.125X 0.125 X. 0.120 groove Kerf, depth configuration TS1 and TS2 represented the innovative configuration with the difference of the number of passes to achieve each configuration. TS4 was the original non-uniform transverse tine that was in the entire lane before grinding. ACPA measured on Board sound intensity on each strip and Mn/DOPT measured Ride quality, Friction, and Texture before and after grinding. The results showed a Friction number distribution of ribbed tire friction for the innovative grind ranging from the 48 to the 54. The disparity between ribbed and smooth tire friction was less than 5 in the innovative configurations. This is a significant issue in the interpretation of non correlative texture degradation and Friction degradation observations and lends credence to the hysterisis theory of tire pavement Suction enhanced by better contact

Ride quality measurements were difficult to establish within the strips as the vertical acceleration of the wheel track was not representative of the single laser response that bounced from kerf to grove and vice versa. This resulted in higher ride quality measurements after grinding. Ride quality before grinding was averaged at 64in/mile but ride quality ranged from 89 inches per mile in the Right wheel path to 160 inches per mile in the innovative grind. A triple laser measurement was also done. Texture measurements indicated greatly improved texture depths with the conventional grind and improved texture depths in the innovative grind, after grinding. Onboard sound intensity tests showed that the innovative grind achieved a high level of quietness surpassing previously known configurations of grinding. At 98.5 Db(A) the Innovative grind was much quieter than the conventional grind 102 Db(A) and than the un-ground tine 104 Db(A).

After the pregrind measurements the mainline Cells 7 and 8 grinding was done by DSI forces between 10/18/07 and 1020/07 and the respective testing for post grind friction texture ride and noise followed shortly after. Cell 7 had the innovative grind while cell 8 had the conventional grind. By the strategy described in section 4, a separate sub cell was created in the left shoulder of cell 8. In that portion, partial tine removal was performed by DSI.

Results showed improved ride quality in the innovative and conventional grinding partly because DSI performed some corrective grinding in portions of extreme faulting. The innovative grinding resulted in IRI improvement from 128 inches per mile to 72 inches per mile in the driving lane. The passing lane showed the same percentage improvement in IRI after grinding in each cell while the driving lane showed a different percentage improvement but similar in both cells. Each Lane therefore had the same percentage improvement in spite of the configuration.

Prior to grinding, texture measurements ranged from .3 mm to .5 mm. In Cell 8 shoulder texture measurements indicated that original textures 0.8 mm had been original textures were maintained over time. This was partially removed by grinding but the macro and micro texture of the diamond grind resulted in improved texture to 1 mm or greater after partial tine removal. Texture improved in the conventional grind to a 1.2mm to 1.5mm range. The innovative grind textures improved to a range of .9mm to 1.1mm. This was more uniform and unlike the conventional

grind, the texture was durable and could not be easily damaged by oblique impacts. Friction measurements in the Mainline were similar to results obtained in cell 37. Once again, the difference between the smooth and ribbed tire friction was small. OBSI noise levels for the conventional grind measured by Mn/DOT at 102 and 103 DBA and the innovative grind was 98.5 db(A)

These cells will be monitored for a minimum of 5 years to determine durability and time related texture/ friction decay of the innovative grinds and the noise trends over the study period.

Section 1 deals with the histrionics preceding this grinding activity and how we got here. Section2 discusses cell 37 proof of concept grinding in detail. Section 3 discusses the results and testing of the configurations in cell 37. Section 3 discusses the testing of cell 37. Section 4 discusses the Grinding activities for cells 7 and 8 MnROAD Mainline and section5 discusses the results of testing. Section 6 concludes that the innovative grind is actually a quiet pavement innovation that should be monitored for many years to observe performance with time

Index

1. Introduction

- 1.1 MnRoad Facility
- 1.2 Low Volume Road
- 1.3 MnRoad Mainline
- 1.4 MnRoad Instrumentation and Performance Database
- 1.5 Histrionics of the Diamond Grinding Initiative

2. Grinding Proof Of Concept in Cell 37

- 2.1 Background
- 2.2 Laboratory Development of Innovative Grinding Textures
- 2.3 Diamond Grinding Configurations on the low volume Road

3. Post Grind Testing in the Low Volume Road

- 3.1 OBSI Noise Testing Sequence
- 3.2 Friction Testing
- 3.3 Ride Testing

4 Mainline Grinding of cells 7 and 8

- 4.1 Layout of Grinding Activities 4.2 Post Grind Testing Results
- 5 Brief Discussion of Results
- 6 Conclusion

List of Tables

- 4.1 Post Grind VS Pre-grind Mainline Ride Quality
- 4.2 OBSI Summary Post Grinding
- 4.3 Historical Pre-grind Friction Data
- 4.4 Post Grind Friction Measurement

List of Figures

- 1.2 MnRoad Mainline and Low Volume Road Indicating cells 7 & 8 as Red Solid Line
- 2.1 A & B Top Track Purdue Laboratory Testing Wheel and Diamond Grinder
- 2.4 Diamond Grinding Test Section in Cell 37
- 3.2.1 Configurations in Cell 37
- 3.2.2 Close-up View of the Quiet Configurations TS1 and TS2 With Original Transverse Tine Texturing Sandwiched Between
- 3.2.3 A Panoramic View of the Texture Strips Looking West on Cell 37 MnRoad
- 3.2.4 Close-up View of TS1, Cell 37 MnRoad

3.2.5 Grinding Head and Spacers

3.2.6 Grinding Shaft before assemblage of Cutters and spacers

4.1 DSI Diamond Grinding Equipment With Cutter and Articulated Water Truck

- 4.2 Conventional Grind Configuration (0.125X0.125X0.120)
- 4.3 Conventional Grind and Innovative Grind
- 4.4 Conventional Grind Cell 8 and Previous Texturing (Transverse Tine)
- 4.5 Innovative Grind with Skid Marks after Friction Testing
- 4.6 Wet Tracks on Innovative Grind after Friction Testing
- 4.7 Statistical-Pass-By Set-Up Beside Cell 7 (Measurement by Illingworth and Rodkin)
- 4.8 Statistical-Pass-By Showing Radar, Microphone and Weather Station Near Cell 8

4.9 ASTM E 2157-01 Circular Track Meter Texture Testing on cell 8

4.10 Close-up view of the Diamond Cutter

- 4.11 DSI Equipment Worked adequately under the Rain
- 5.1 Measured FN Post Grind
- 5.2 OBSI Cells 7 and 8 Post Grind

Appendix

A Details OBSI Test

- A1. Post Grind Tables
- A2. Cell 7 Passing Lane Run 1
- A3. Cell 7 Passing Lane Run 2&3
- A4. Cell 7 Mid Lane Post Grind Run 1
- A5. Cell 7 Midlane Run 2
- A6. Cell 7 Midlane Run 3
- A7. Cell 8 PL Run 1
- A8. Cell 8 PL Run 2
- A9. Cell 8 PL Run 3
- A10 Cell 8 DL Run 1
- A11 Cell 8 DL Run 2
- A12 Cell 8 DL Run 3
- B Post Grind & Pre-Grind Mainline Ride Quality
 - B1. Post Grind VS Pre-Grind Mainline Ride Quality
 - B2. Pre-Grind Ride Data
 - B3. Post Grind Report
- C Additional Friction data
 - C1. Pre-Grind Friction Data
 - C2 Post Grind friction data
- D Additional Texture Data
 - D1. Pre-Grind Texture Data
 - D2. Post Grind Texures
- E MnRoad Mainline and Low Volume Road
- F Pre-Grind and Post Grind Cell 37
 - F1 Ride Data for Cell 37
 - F2. Texture Data Cell 37
 - F3. Friction Data for Cell 37

F4. Noise data From Cell 37

1 INTRODUCTION

1.1 MnRoad Facility

The Minnesota Department of Transportation (Mn/DOT) constructed the Minnesota Road Research Project (MnROAD) between 1990 and 1994. MnROAD is located along Interstate 94 forty miles northwest of Minneapolis/St.Paul and is an extensive pavement research facility consisting of two separate roadway segments containing 51 distinct test cells. Each MnROAD test cell is approximately 500 feet long. Subgrade, aggregate base, and surface materials, as well as, roadbed structure and drainage methods vary from cell to cell. All data presented herein, as well as historical sampling, testing, and construction information, can be found in the MnROAD database and in various publications. Layout and designs used for the Mainline and Low Volume Road are shown in appendix E

Additional information on MnROAD: http://mnroad.dot.state.mn.us/research/mnresearch.asp.

Figure 1 – MnROAD Mainline and Low Volume Road Indicating Cells 7 and 8 as Red Solid Line

1.2 Low Volume Road

Parallel and adjacent to Interstate 94 and the Mainline is the Low Volume Road (LVR). The LVR is a 2-lane, 2¹/₂-mile closed loop that contains 20 test cells. Traffic on the LVR is restricted to an MnROAD operated vehicle, which is an 18-wheel, 5-axle, tractor/trailer with two different loading configurations. The "heavy" load configuration results in a gross vehicle weight of 102 kips (102K configuration). The "legal" load configuration has a gross vehicle weight of 80 kips (80K configuration). On Wednesdays, the tractor/trailer operates in the 102Kconfiguration and travels in the outside lane of the LVR loop. The tractor/trailer travels on the inside lane of the LVR loop in the 80K configuration on all other weekdays. It was hypothesized at the inception of MnROAD that the 2 load spectra would yield similar damage ESALs on the LVR are determined by the number of laps (80 per day on average) for each day and are entered into the MnROAD database.

1.3 MnROAD Mainline

The mainline consists of a 3.5-mile 2-lane interstate roadway carrying "live" traffic. Cell design/layout can be found in Appendix-E. The Mainline consists of both 5-year and 10-year pavement designs. The 5-year cells were completed in 1992 and the 10-year cells were completed in 1993. Originally, a total of 23 cells were constructed consisting of 14 HMA cells and 9 Portland Cement Concrete (PCC) test cells.

Traffic on the mainline comes from the traveling public on westbound I-94. Typically the mainline traffic is switched to the old I-94 westbound lanes once a month for three days to allow MnROAD researchers to safely collect data. The mainline ESALs are determined from an IRD hydraulic load scale was installed in 1989 and a Kistler quartz sensor installed in 2000. Currently the mainline has received roughly 7. million flexible Equivalent Single Axle Loads (ESALS) and 10 million Rigid ESALS as of December 31, 2006

1.4 MnROAD Instrumentation and Performance Database

Data collection at MnROAD is accomplished with a variety of methods to help describe the layers, the pavement response to loads and the environment, and actual pavement performance. Layer data is collected from a number of different types of sensors located throughout the pavement surface and sub-layers, which initially numbered 4,572. Since then researchers have added to this total with additional installations and sensors types. Data flows from these sensors to several roadside cabinets, which are connected by a fiber optic network that is feed into the MnROAD database for storage and analysis. Data can be requested from the MnROAD database for each sensor along with the performance data that is collected thought the year. This includes ride, distress, rutting, faulting, friction, forensic trenches, material laboratory testing and the sensors measure variables such as temperature, moisture, strain, deflection, and frost depth in the pavement along with so much more.

1.5 Histrionics of The Diamond Grinding Initiative

With increased understanding of surface characteristics it was expedient re-examine on how diamond grinding process and performance can be improved to enhance quietness, safety and ride comfort. An attempt to define the scope without re-inventing the wheel led to a collaboration of Center for Quiet Safe and Durable Highways (SQDH) Purdue, Federal Highway Administration (FHWA), American Concrete paving Association (ACPA), International Grinding and Grooving Association (IGGA) towards a laboratory development of a quieter grinding configuration. It was determined at that juncture that MnROAD studies would create an opportunity to validate the Purdue results. Some meetings were held with IGGA local Minnesota and Concrete Paving Association of Minnesota towards this objective.

The study was posted as solicitation 1048 in the Transportation Pooled Fund (TPF website and responses were obtained from Mn/DOT (Lead state), TXDOT and FHWA (Mark Swanlund). It was subsequently cleared by FHWA and assigned a TPF # (TPF 5-(134)... However, to fulfill the

required 20% percent match for the Federal participation, some non-Federal source for a minimum of \$25,000 was required... ACPA and IGGA agreed to perform the Diamond grinding as an in-kind match. Mn/DOT developed a partnership agreement with ACPA pursuant to the diamond grinding. Mn/DOT made 2 cells available in MnROAD Mainline for this study. Subsequently ACPA requested to do a proof-of-concept at MnROAD Low Volume Road to increase the comfort level of performing unconventional grind before proceeding to the mainline. Mn/DOT provided cell 37 in the low volume loop for the proof of concept or initial validation test.

The proof of concept grinding was performed in the week of June 18 2007. Noise (OBSI) measurements were performed by Larry Scofield of ACPA and the texture, ride, and friction measurements were performed by Mn/DOT Concrete Research and MnROAD Operations. In the pooled fund meeting held on the 18th of July member states expressed the need to see the performance of the grinding configurations in full lane width as against the 2' test strips in the low volume road. The group agreed on the following points:

- The grinding of the mainline has to be done. Bernard and Ben Worel met with IGGA and fully explored the original option of industry grinding the mainline. Diamond Surface Incorporated (DSI) agreed to construct the cells at their expense. In consequence Mn/DOT elected to perform the Monitoring of the ground pavement.
- The scope of works includes monitoring of friction, noise, and texture and ride quality. Development of a protocol for splash and spray will not be included in the scope of works. A consultant will be hired however to provide an advisory role. Consultant shall in the advisory role make recommendation for other research needs, perform statistical analysis on our data in relation to data from other surface characteristics initiatives.
- In this role the consultant will participate in meetings and render construction and periodic reports. Such a consultant will be proficient in surface characteristics work and should be knowledgeable in the interpreting analyzing data on texture, noise, ride and friction. Durability and benefit /cost will also be documented and reported.

2. Grinding Proof of Concept in Cell 37

2.1 Background

The IGGA and ACPA have been working with Purdue University to develop a diamond grinding texture with improved noise characteristics. The research began by attempting to optimize blade width and spacer configurations. Traditionally, this had been thought to control resulting noise characteristics. However, the Purdue work indicated that fin profile was the controlling variable and not the blade/spacer configuration.

2.2 Laboratory Development of Innovative Grinding Textures

Work then began to produce fin profiles that were essentially uniform on top. After experimentation, two different techniques appeared to work best. The use of three chopper

blades utilized as spacers placed between two 0.125 inch conventional diamond grinding blades, and a "flush" grind with grooving. The flush grind was produced by using 0.090 inch width blades with 0.090 inch spacers to lightly grind the surface. The Purdue grinding head was then offset slightly to grind a second time to remove the fins. The flush ground texture was then grooved with 0.125 inch diamond grinding blades spaced on 0.50 inch centers. The grooves produced measured 0.012 inches deep. The chopper blade configuration used chopper blades that were dressed to 0.08 inches shorter in radius than the 0.125 inch blades.

The Purdue research uses the Purdue Tire Pavement Test Apparatus (TPTA) to evaluate the various textures. This laboratory based device, shown in Figure 2.1, consists of a twelve foot diameter drum upon which six cast segments are placed around the circumference as shown. The IGGA developed grinding head was used to grind the various textures and is shown in the right hand side of Figure 2.1

Figure 2.1a and b Laboratory Diamond Grinder and Top Track Purdue Testing Wheel

Noise testing, using Sound Intensity (SI) techniques could only be conducted to 30 mph in the laboratory although field evaluations are typically conducted at 60 mph. The diamond ground surface, although resembling actual field grinding had not been produced using actual diamond grinding equipment in practice. The flush grind surface was produced on the TPTA by offsetting the head and making a second pass such that the fins were ground off.

2.3 Diamond Grinding Configurations on the low volume Road

Field validation was a two-part process. First the "proof of concept" intended to prove or disprove that textures created and measured on the TPTA reflect diamond ground textures on the MnROAD Low Volume Road. The second stage was the actual full width-production-based construction operation. These configurations were tested for noise, friction characteristics as well as ride quality and texture in each case.

On May 24, 2007 sections 37, 38, and 39 of the Mn ROAD low volume concrete test sections were reviewed by ACPA (Larry Scofield). It was noted that cell 38 had significant cracking and

distress. Section 37 and 39 both appeared useable but one large transverse crack existed in section 39. All the sections had surface textures in good condition with well sealed joints. The existing texture was a random transverse tine pattern installed at right angles to the roadway direction. The transverse joints were skewed. The joints appeared to be approximately 3/8 to $\frac{1}{2}$ inch in width with an approximate 3/16 inch recess in the silicone sealant.

In the eastbound direction two inch cores had been retrieved across two joint locations. This requires that the WB directions be used for the testing to avoid these joints. The WB sections, however, included instrumentation access covers in the wheel path locations.

The field validation experiment consisted of grinding two wheel tracks, each 18 inches wide by 500 ft long, and one wheel track 24 inches wide by 500 ft long. One wheel track was ground using 0.125 inch blades with 0.120 inch spacers. This was TS3 and Similar to a conventional grind. This wheel track was considered the "control" and used as a benchmark to evaluate the other two strips. Each strip was ground to 24 inches wide to eliminate the need to restack the equipment head as its current configuration is 24 inches wide.

In a second strip the grinders used the triple chopper blades in combination with 0.125 inch conventional blades. A third track used a technique to produce a flush grind condition similar to the Purdue work and then groove it with 0.125 blades spaced on 0.50 inch centers. The Purdue work used 0.090 inch blades and spacers to produce this texture and then offset and reground to remove the fins. An alternative technique will be required in the field to produce the flush grind condition. Anticipating that the existing random transverse tined texture may have impact on the On Board Sound Intensity (OBSI) levels, flush grinding was performed in part to eliminate current random tine texture. Uniformity of removal of the existing tine was an issue of concern.

The diamond grinding configurations were arranged in cell 37 as shown in figure 2.3.1. Three test sections, two 18 inches wide and one 24 inches wide were constructed leaving a strip (TS4) of existing random transverse tine on the right wheel path.

Figure 2.4 Diamond Grinding Test Section Layout in Cell 37 3 Post Grind Testing in the Low Volume Road

3.1 OBSI Noise Testing Sequence

OBSI testing was conducted on the existing random transverse tining in each of the four strips prior to grinding. Upon completion of the diamond grinding, the surface of each of the three test grind wheel tracks were tested again. Subsequently, the joint seal were removed using a joint plow or other suitable device. Upon completion of sealant removal, OBSI testing was conducted again on the four strips. The intent was to validate both the Purdue TPTA recommended surfaces and to validate the Purdue TPTA predicted joint effects for one joint width level.

For each test on each of the four strips, four replicate runs were conducted with the ACPA OBSI equipment. This resulted in 12 tests for each of wheel tracks 1-3 and 8 tests for wheel track 4 for a total of 44 OBSI tests. Since the wheel track is only 18 inches wide, guidance of the test vehicle (e.g. Chevy Malibu) was carefully performed during OBSI testing. This was accomplished by painting dots on the PCCP surface to use for guidance. A separate set of dots will be needed for each wheel track. The markings will need to extend through the test areas and beyond to allow adequate alignment. OBSI testing was conducted by the ACPA using the dual probe configuration at 60 mph with the 16 inch ASTM SRTT tire.

Upon completion of the MnRoad testing, the ACPA OBSI test tire and wheel (e.g. ASTM SRTT tire mounted on Chevy Malibu Wheel) was dismounted from the Malibu and mounted on the Purdue TPTA and used to retest the original TPTA texture samples (e.g. triple chopper and flush grind). The recently calibrated ACPA Cal Tone was used to calibrate the Purdue equipment. This will remove as much tire bias and microphone calibration bias as possible between the field and laboratory comparisons. Mn/DOT Conducted Ride, Friction, and Texture measurements. Results of the Proof of concept experiment in the low volume road are shown in Appendix F

3 Results of Testing on Cell 37

Detailed test results are shown in appendix F.

3.2 Friction Testing

Mn DOT conducted ASTM E-274 Locked-Wheel Skid testing with the ASTM smooth tire. Friction testing will be conducted two times during the experiment: (1) After completion of the initial (e.g. prior to grinding) OBSI testing on test sections TS1, TS2 and TS3; and a second time on these same sections after the joint seal has been removed and the final OBSI test measurements obtained. This sequencing eliminated the possibility of contamination of the textures by the skid tester while still obtaining before and after measurements to evaluate frictional changes.

3.3 Ride Testing

Ride measurements were accomplished with the AMES LISA Light weight profiler operated at 10 mph. To ensure measurements were within the cell auto start and stop commands were used.

Fig 3.2.1 Configurations in Cell 37

Fig 3.2.2 Close-up View of the Quiet Configurations TS1 and TS 2 With Original Transverse tine texturing sandwiched between.

Fig 3.2.3 A Panoramic View of the texture Strips Looking West on Cell 37 MnROAD

Fig 3.2.4 Close-up View Of TS1 Innovative Grind in one pass Cell 37 MnROAD

Fig 3.2 .5 Grinding Head and Spacers

Fig 3.2.6 Grinding Shaft before assemblage of Cutters and spacers

4 MAINLINE (Cells 7 and 8) GRINDING ACTIVITIES

The Details of the construction activities are shown in Appendix Table a 4.2. Grinding of the Surface was preceded by an identification of the configurations to which the two cells would be ground. The strategy chosen included

- Conventional grinding on Cell 8
- Innovative grinding on cell 7
- Partial grind on Tied Concrete shoulder of cell 8

The layout is shown in table 4.1 **Table 4.1 Layout of Grinding Activities**

Diamond Services Incorporated performed the Grinding. Equipment on site included the Diamond grinding equipment, consisting of the actual cutting equipment with an articulated water receptacle. DSI performed longitudinal grinding in minimally overlapping longitudinal strips. This resulted in 4 passes per 12 ft lane. The 2 cells were ground with the conventional grinding . That was the full grind for cell 8 and the primary grind for cell 7. The secondary grind for cell 7 is the innovative diamond grinding configuration that is the subject of this study.

DSI Performed the Grinding in the sequence recorded below. Prior to the mainline closure that commenced on the 15th of October, Mn/DOT Concrete Research Team had conducted Pregrind OBSI, and Ride Quality tests on Cells 7 and 8. The proceeding is the sequence of activities during the actual lane closure that spanned from the 15th of October to the 23rd of October.

October 15 2007:

7:00 AM : MnROAD Operations closed mainline traffic switch to allow testing prior to the grinding.

- 10:00AMMn/DOT Concrete research mark the spots (BX 1 to BX 13 representing 52 spots) for pre and post grind texture measurements on the right shoulder on both cells such that the prescribed test spots are the locations where lines Drawn from the shoulder spots parallel to the skew joints intersect the 4 wheel path. Mn/DOT Concrete Research (Series BX 14 to BX21 representing 18 spots were also made on the shoulder of Cell 8.
- 12:00 noon Mn/DOT Concrete Research Operations conducts a visual survey and observes sensor caps predominantly on cell 7 wheel path and assess the extent to which that would affect statistical pass by noise measurements.

October 16 2007 :

• Weather was overcast and characterized by intermittent drizzles Mn/DOT Concrete research conducted some Sand Volumetric Technique (Sand patch tests and confirmatory Circular track meter tests on some location. Concrete Research Operations requested for possible removal of sensor shaft capping that was on the pavement surface predominantly on cell 7 due to the anticipation that it may cause transient effects on the noise spectrum particularly in the Statistical Pass By measurements. MnROAD Operations promised to work on the caps to minimize influence on grinding and accuracy of noise measurement.

- October 17 2007 : Overcast, intermittent drizzles. 55- 60 Deg.
- 7:30 AM MnROAD Operations secure water meter and Hydrant in Otsego for the grinding.
- 12:00 noon Mn/DOT Concrete Research performs the final pregrind texture measurements To ASTM E-965 and ASTM E-2153 Standards. DSI brings equipment to site. Equipment included Diamond Grinder, Water Truck. Crew consisted of a supervisor, an Operator and the water truck driver. DSI Terry Kraemer confers with Mn/DOT Concrete Research Operations to confirm location and configuration of Grinding.

October 18 2007

- 6:30 am: DSI Commences Grinding from Driving lane left edge and performs 4 ft wide conventional grinding strips non stop from East end of Cell 8 to west end of cell 7.
- 9:30AM: DSI performs corrective grinding to remove prominent bumps from cell 8. The bumps were removed in 6 parallel runs though the 300ft portion of the Cell that was faulted and fraught with bumps and dips. Original construction records indicated that this correction was suggested during the initial testing of the original pavement but was not done at that time.
- 12:00 Noon: DSI resumes conventional grind in parallel strips from east end of cell 8 to west end of cell 7.
- 6:00pm DSI Closes for the Day after grinding the entire driving lane and half of the Passing Lane.

10/19/07 Weather Overcast Intermittently clear temp55-60 degrees

- <u>6:00AM</u> DSI commences grinding of the Remaining strip of the passing Lane.
- <u>12:00 Noon</u> DSI Completes conventional grinding of cells 7 and 8 and partial texture removal grind of cell 8 Shoulder. Cell 8 Shoulder was ground to a lesser groove depth than the conventional grind as requested by ACPA.
- 1:00PM DSI disassembles the blades for the conventional grind and sets up the blades for the single pass innovative grind.
- 4:00PM DSI commences the innovative grinding on cell 7.
- 6:30PM. DSI completes the Innovative grinding of Cell 7 Driving Lane.

10/ 20/07 (Saturday) clear 55-60 degrees

• 6:00 AM DSI Commences innovative grinding of passing lane.12:00 noon DSI completes grinding of the passing Lane thus completing the entire grinding.

Fig 4.1DSI Diamond Grinding equipment complete with cutter and articulated water truck

Fig 4.2 Conventional Grind Configuration (0.125X 0.125x.0.120)

Fig 4.3 Conventional Grind and Innovative Grind

Fig 4.4 Conventional Grind Cell 8 And Previous Texturing (Transverse Tine)

Fig 4.5 Innovative Grind with Skid Marks After Friction Testing

Fig 4.6 Wet Tracks on Innovative Grind After Friction Testing

Fig 4.7 Statistical-Pass-By Set-Up Beside Cell 7 (Measurement by Illingworth and Rodkin)

Fig 4.8 Statistical-Pass-By Showing Radar Measuring Speed Microphone and Weather Station Near cell 8

Fig 4.9 ASTM E 2157-01 Circular Track Meter Texture Testing on cell 8

Fig 4.10 Close-up view of the Diamond Cutter

Fig 4.11 DSI Equipment Worked adequately under the Rain

4 POST GRIND TESTING RESULTS

Cell Location	Lane	Wheel Path	Pre-Grind IRI (inch/Mile)	Post Grind IRI (inch/Mile)
Cell 7	Driving	LWP	72.8	48.3
		LWP		44.5
		LWP		46.5
		RWP	78.5	51.9
		RWP		55.4
		RWP		44.2
Cell 8	Driving	LWP	123.1	70.4
		LWP		74.1
		LWP		74.9
		RWP	104.8	74.2
		RWP		75.4
-		RWP		75.3
Cell 7	Passing	LWP	68	53.7
-		LWP		47.5
-		LWP		50
		RWP	128.7	81.7
-		RWP		84.9
		RWP		73.7
Cell 8	Passing	LWP	107.9	70.7
-		LWP		55.9
		LWP		66
		RWP	128	81.7
	1	RWP		84.9
		RWP		73.7

Table 4.1 POST GRIND VS PREGRIND Mainline Ride Quality Cells 7 and 8

O.B.S.I. Data Sheet										
				Date:10/22/2007						
			Operator: J.I	P. & T.S.						
		Leading	Trailing							
	Test									
Location	No.	Edge	Edge	Average						
Cell 8 D.L.	1	103.6	102.6	103.1						
	3	104.0	103.0	103.5						
	5	103.7	102.9	103.3						
Cell 7 D.L.	2	98.8	99.7	99.3						
	4	98.1	98.8	98.5						
	6	98.5	99.0	98.7						
Cell 7 Midlane	7	98.6	99.0	98.8						
	8	98.4	99.0	98.7						
	9	98.2	98.7	98.5						
Cell 8 P.L.	10	103.4	102.5	103.0						
	12	103.5	102.6	103.1						
	14	104.1	103.3	103.7						
C ell 7 P.L.	11	98.2	99.2	98.7						
	13	98.2	99.2	98.7						
	15	98.7	99.6	99.2						

Table 4.2 OBSI SUMMARY POST GRINDING

 Table 4.3 Pre-grind OBSI (Illingworth and Rodkin)

			Cell 7				
Driving Ribbe	ed	RTF		PASSING Ribb	bed	RTF	
		D lane RT	-			Plane RTF	
ML-Driving-RL	23-Jun-94	60	Ribbed	ML-Passing-LL	23-Jun-94	58.7	Ribbed
ML-Driving-RL	29-Oct-97	55.1	Ribbed	ML-Passing-LL	23-Jun-94	58.7	Ribbed
ML-Driving-RL	20-Oct-98	47.7	Ribbed	ML-Passing-LL	20-Sep-94	52.5	Ribbed
ML-Driving-RL	31-Oct-01	38.1	Ribbed	ML-Passing-LL	4-May-95	60.1	Ribbed
ML-Driving-RL	3-Nov-04	57.7	Ribbed	ML-Passing-LL	20-Jun-95	63.6	Ribbed
ML-Driving-RL	24-May-05	53.3	Ribbed	ML-Passing-LL	29-Oct-97	58.3	Ribbed
ML-Driving-RL	19-Apr-06	55.7	Ribbed	ML-Passing-LL	20-Oct-98	53.4	Ribbed
ML-Driving-RL	24-Oct-06	59.5	Ribbed	ML-Passing-LL	31-Oct-01	42.1	Ribbed
ML-Driving-RL			Ribbed	ML-Passing-LL	3-Nov-04	56.9	Ribbed
ML-Driving-RL	-		Ribbed	ML-Passing-LL	24-May-05	58.8	Ribbed
ML-Driving-RL	-		Ribbed	ML-Passing-LL	19-Apr-06	57.5	Ribbed
ML-Driving-RL	_		Ribbed	ML-Passing-LL	24-Oct-06	59.4	Ribbed
				ML-Passing-LL	14-Oct-98	56.7	Ribbed
Driving Smoo	oth	STF	Passing S	mooth		STF	
		D Lane ST	F			P Lane ST	F
ML-Driving-RL	14-Oct-98	31	Smooth		14-Oct-98	46	Smooth
ML-Driving-RL	20-Oct-98	36.2	Smooth	ML-Passing-LL	20-Oct-98	41.9	Smooth
ML-Driving-RL	19-Apr-06	26.2	Smooth	ML-Passing-LL	3-Nov-04	43.3	Smooth
ML-Driving-RL	24-Oct-06	35.9	Smooth	ML-Passing-LL	19-Apr-06	40.4	Smooth
			Cell 8				
Driving Ribbe	ed	RTF		PASSING Ribb	bed	RTF	
		D lane RT	-			P Lane RT	F
ML-Driving-RL	23-Jun-94	54.3	Ribbed	ML-Passing-LL	23-Jun-94	56.4	Ribbed
ML-Driving-RL	20-Sep-94	54.9	Ribbed	ML-Passing-LL	20-Sep-94	47	Ribbed
ML-Driving-RL	4-May-95	54.8	Ribbed	ML-Passing-LL	4-May-95	57.7	Ribbed
ML-Driving-RL	20-Jun-95	48.5	Ribbed	ML-Passing-LL	20-Jun-95	55.4	Ribbed
ML-Driving-RL	29-Oct-97	44.5	Ribbed	ML-Passing-LL	29-Oct-97	52.8	Ribbed
ML-Driving-RL	14-Oct-98	46.2	Ribbed	ML-Passing-LL	14-Oct-98	54.4	Ribbed
ML-Driving-RL	20-Oct-98	37.7	Ribbed	ML-Passing-LL	20-Oct-98	39.9	Ribbed
ML-Driving-RL	31-Oct-01	38.7	Ribbed	ML-Passing-LL	31-Oct-01	41.2	Ribbed
ML-Driving-RL	3-Nov-04	47.5	Ribbed	ML-Passing-LL	3-Nov-04	50.4	Ribbed
ML-Driving-RL	24-May-05	42.6	Ribbed	ML-Passing-LL	24-May-05	46.8	Ribbed
ML-Driving-RL	19-Apr-06	60.7	Ribbed	ML-Passing-LL	19-Apr-06	52.6	Ribbed
ML-Driving-RL	24-Oct-06	48	Ribbed	ML-Passing-LL	24-Oct-06	47	Ribbed
						-	
Driving Smoo	oth	STF	Passing S	mooth		STF	
		D Lane ST	F			Plane STF	
ML-Driving-RL	14-Oct-98	25.9	Smooth	ML-Passing-LL	14-Oct-98	41.3	Smooth
ML-Driving-RL	20-Oct-98	22.6	Smooth	ML-Passing-LL	20-Oct-98	24.3	Smooth
ML-Driving-RL	19-Apr-06	30.2	Smooth	ML-Passing-LL	3-Nov-04	29.7	Smooth
ML-Driving-RL	19-Apr-06	30.2	Smooth	ML-Passing-LL	19-Apr-06	28	Smooth
ML-Driving-RL	24-Oct-06	20.9	Smooth				

TABLE 4.4 HISTORICAL PREGRIND FRICTION DATA

CELL	LANE	DAY	ТІМЕ	FN	SPEED	AIR_TEMP	TIRE_TYPE	EQUIPMENT	STA	DATE_UPDA	Texture E-274	Туре
						_		Mn/DOT -				
7	Driving	Tuesday	10:32 AM	53.6	40.4	52	Ribbed	1295 Friction		22-Oct-07	0.56	Innovative
7	Driving	Tuesday	10:32 AM	54.7	40.3	52	Ribbed	Mn/DOT - 1295 Friction		22-Oct-07	0.53	Innovative
7	Driving	Tuesday	10:32 AM	51.2	42.1	52	Smooth	Mn/DOT - 1295 Friction		22-Oct-07	0.53	Innovative
7	Driving	Tuesday	10:32 AM	47.4	41.4	52	Smooth	Mn/DOT - 1295 Friction		22-Oct-07	0.53	Innovative
7	Passing	Tuesday	11:08 AM	47.4	42	52	Ribbed	Mn/DOT - 1295 Friction		22-Oct-07	0.64	Innovative
7	Passing	Tuesday	11:08 AM	49.3	41.4	52	Ribbed	Mn/DOT - 1295 Friction		22-Oct-07	0.61	Innovative
7	Passing	Tuesday	11:08 AM	48.8	41.2	52	Smooth	Mn/DOT - 1295 Friction		22-Oct-07	0.61	Innovative
7	Passing	Tuesday	11:08 AM	44.6	40.8	52	Smooth	Mn/DOT - 1295 Friction		22-Oct-07	0.64	Innovative
8	Driving	Tuesday	10:32 AM	85.9	40.3	52	Ribbed	Mn/DOT - 1295 Friction		22-Oct-07	0.86	Conventional
8	Driving	Tuesday	10:32 AM	80.2	41.3	52	Ribbed	Mn/DOT - 1295 Friction		22-Oct-07	0.81	Conventional
8	Driving	Tuesday	10:32 AM	63.5	41.4	52	Smooth	Mn/DOT - 1295 Friction		22-Oct-07	0.81	Conventional
8	Driving	Tuesday	10:32 AM	62.7	40.4	52	Smooth	Mn/DOT - 1295 Friction		22-Oct-07	0.81	Conventional
8	Passing	Tuesday	11:08 AM	62.6	40.4	52	Ribbed	Mn/DOT - 1295 Friction		22-Oct-07	1.24	Conventional
8	Passing	Tuesday	11:08 AM	65.2	41.2	52	Ribbed	Mn/DOT - 1295 Friction		22-Oct-07	1.24	Conventional
8	Passing	Tuesday	11:08 AM	64.2	41	52	Smooth	Mn/DOT - 1295 Friction		22-Oct-07	1.02	Conventional
8	Passing	Tuesday	11:08 AM	73.1	40.2	52	Smooth	Mn/DOT - 1295 Friction		22-Oct-07	0.89	Conventional

Table 4.5POST GRIND FRICTION MEASUREMENT

5 Brief Discussion of Results

The Proof of concept grinding v alidated the feasibility of producing the innovatiovew grind at a production level. Although it was not a full width grinding exercise four test strips were created. TS1 was a flush grind and groove in one pass, TS2 was the flush grind and groove in 2 passes, TS3 was the conventional grind of .125X .125 X.120 g4rrove Ke4rf, depth configuration TS1 and TS2 represented the innovative configuration with the difference of the number of passes to achieve each configuration. TS4 was the original non-uniform transverse tine that was in the entire lane before grinding. ACPA measured on Board sound intensity on each strip and Mn/DOPT measured Ride quality, Friction, and Texture before and after grinding. The results showed a Friction number distribution of ribbed tire friction for the innovative grind ranging from the upper 40s to the mid 50s. The disparity between ribbed and smooth tire friction was less than 5 in the innovative configurations. This is a significant issue in the interpretation of non correlative texture degradation and Friction degradation observations and lends credence to the hysterisis theory of tire pavement suction enhanced by better contact

Ride quality measurements were difficult to establish within the strips as the vertical acceleration of the wheel track was not representative of the single laser response that bounced from kerf to grove and vice versa. This resulted in higher ride quality measurements after grinding. Ride quality before grinding was averaged at 64in/mile but ride quality ranged from 89 inches per mile in the Right wheel path to 160 inches per mile in the innovative grind. A triple laser measurement was also done. Texture measurements indicated greatly improved texture depths with the conventional grind and improved texture depths in the innovative grind, after grinding. Onboard sound intensity tests showed that the innovative grind achieved a high level of quietness surpassing previously known configurations of grinding. At 98.5 Db(A) the Innovative grind was much quieter than the conventional grind 102 Db(A) and than the Un-ground Tie 104 Db(A).

After Mn/DOT had performed pre-grind measurements the mainline Cells 7 and 8 grinding was done by DSI forces between 10/18/07 and 1020/07 and the respective testing for post grind friction texture ride and noise followed shortly after. Cell 7 had the innovative grind while cell 8 had the conventional grind. By the strategy described in section 4, a separate sub cell was created in the left shoulder of cell 8. In that portion, partial tine removal was performed by DSI. Tables 4.1 to 4.5 show the Pregrind and post Grind test results. More detailed results are shown in Appendix A to D.

The Mn/DOT Standard equipment of a Bruel and Kjaer front end, a rig system developed by Illingworth and Rodkin, the Inventor of the OBSI method and a set of sophisticated microphones supplied by BRC Engineering. The Rig is installed on the Standard Reference Test Tire and connected to the frontend through a series of communication cables. The front-end is also linked to a laptop that allows direct analysis of the noise data. The Mn/DOT equipment is installed on a Chevrolet Impala as shown in figure 1. Installations, training and test runs were completed in July 2007 and the Mn/DOT proficient operators are John Pantelis, Bernard Izevbekhai Ted Snyder, and Jack Herndon.

In the OBSI procedure, a convenient logarithm scale is used to mimic the human hearing spectrum. This is the A-weighted scale that is simply explained by the following expatiation. If "n" similar sources generate a noise level i db (A), the total Noise level is given by

$$dB(A)_{t} = 10 * \log \left[10 \frac{\{dB(A)/10\}}{1} + 10 \frac{\{dB(A)/10\}}{2} + \dots + 10 \frac{\{dB(A)/10\}}{n}\right]$$

Consequently, if there are 2 sources with the same sound intensity, the cumulative intensity is thus 3 db (A) higher than the individual intensity as shown below. This implies that a reduction of the sound intensity by 3dba is equivalent in effect to a traffic reduction to 50 % of original ADT.

= (i + 3) dB(A)

Similarly In the A weighted metric a reduction of 4.7 d B(A) is equivalent to a 70% reduction in the overall noise level. OBSI noise levels for the conventional grind measured by Mn/DOT at 102 and 103 DBA and the innovative grind was 98.5 db(A)

Results showed improved ride quality in the innovative and conventional grinding partly because DSI performed some corrective grinding in portions of extreme faulting. The innovative grinding resulted in IRI improvement from 128 inches per mile to 72 inches per mile in the driving lane. The passing lane showed the same percentage improvement in IRI after grinding in each cell while the Driving lane showed a different percentage improvement built similar in both cells. Each Lane therefore had the same percentage improvement in spite of the configuration.

Texture measurements ranges from .3 mm to .5 mm prior to grinding. In Cell 8 shoulder texture measurements indicated that original textures 0.8 mm had been original textures were maintained over time. This was partially removed by grinding but the macro and microtexture of the diamond grind resulted in improved texture to 1 mm or greater after partial tine removal. Texture improved in the conventional grind to a 1.3mm to 1.8 mm range. The innovative grind textures improved to a range of .9mm to 1.1mm. This was more uniform and unlike the conventional grind, the texture was durable and could not be easily damaged by oblique impacts on Friction measurements in the Mainline were similar to results obtained in cell 37. Once again, the difference between the smooth and ribbed tire friction was small.

These cells will be monitored for a minimum of 5 years to determine durability and time related texture/ friction decay of the innovative grinds and the noise trends over the study period.

□FN 10^{11/10} R¹¹⁰ R¹¹⁰

POST GRIND FN

Fig 5.1 Measured FN post grind

OBSI Cells 7 and 8 POSTGRIND

Fig 5.2 OBSI Cells 7 and 8 Post Grind

6 CONCLUSION

- The grinding configuration produced by the Purdue SQDH laboratory is an innovative a quiet pavement solution. At 98.5 Db(A) it rep[resents the quietest diamond ground pavement in the United States. It provides lesser ribbed tire friction than the conventional grind but higher smooth tire friction comparable to the ribbed tire friction numbers. This is an interesting phenomenon as it provides higher than expected friction numbers for worn tires.
- Successful placement of the innovative configuration in the MnROAD mainline confirms the feasibility of performing the innovative grinding in a single pass.
- Improved ride quality was not validated in the low volume road due to difficulty in measuring ride quality is strips thinner than the light weight profiler. However both the conventional and innovative grind resulted in improved ride quality in the mainline where full width grinding was done.
- The test sections will be monitored for many years to study the durability of the surface characteristics of the innovative grinding

Appendix A DETAILS OBSI TEST Table A1 Post Grind Tables

OBSI SUMMARY

		O.B.S.I. Data	Sheet		
				Date:10/22/2007	
			Operator: J.	P. & T.S.	
		Leading	Trailing	1	
Location	Test No.	Edge	Edge	Average	
Cell 8 D.L.	1	103.6	102.6	103.1	
	3	104.0	103.0	103.5	
	5	103.7	102.9	103.3	
Cell 7 D.L.	2	98.8	99.7	99.3	
	4	98.1	98.8	98.5	
	6	98.5	99.0	98.7	
Cell 7					
Midlane	7	98.6	99.0	98.8	
	8	98.4	99.0	98.7	
	9	98.2	98.7	98.5	
Cell 8 P.L.	10	103.4	102.5	103.0	
	12	103.5	102.6	103.1	
	14	104.1	103.3	103.7	
C ell 7 P.L.	11	98.2	99.2	98.7	
	13	98.2	99.2	98.7	
	15	98.7	99.6	99.2	

Table A2 Cell 7 Passing lane Run 1

	Leading Edg	е		Trailing Edg	ge		AVG
	IL	PI	Coh	IL	PI	Coh	IL
250	83.3	1.6	0.4	83.2	2.8	0.4	83.3
315	81.1	2.4	0.6	84.8	1.1	0.6	83.3
400	79.7	4.0	0.8	80.1	4.5	0.7	79.9
500	81.3	2.4	0.9	78.8	5.4	0.8	80.2
630	83.7	2.4	1.0	81.6	3.3	0.9	82.8
800	90.4	0.8	1.0	89.2	1.2	1.0	89.8
1000	94.5	0.6	1.0	95.3	0.9	1.0	94.9
1250	89.0	0.7	1.0	92.2	0.7	1.0	90.9
1600	88.5	1.0	1.0	88.4	0.9	1.0	88.5
2000	88.2	1.0	1.0	86.9	1.0	1.0	87.6
2500	85.6	1.1	1.0	85.9	0.9	1.0	85.8
3150	80.6	0.9	0.9	81.3	0.8	0.9	81.0
4000	77.3	1.2	0.8	78.1	1.2	0.9	77.7
5000	74.0	1.7	0.7	73.8	1.7	0.7	73.9
A-wtd	98.5			99.0			98.7

	Leading Ed	dge		Trailing Edg	ge		AVG
	IL	PI	Coh	IL	PI	Coh	IL
250	74.6	10.3	0.5	83.6	3.6	0.5	81.1
315	#NUM!	#NUM!	0.6	85.5	1.2	0.6	#NUM!
400	80.5	3.2	0.8	77.6	7.9	0.6	79.3
500	81.9	2.3	0.9	77.5	7.3	0.8	80.2
630	83.2	2.6	1.0	82.3	3.1	0.9	82.8
800	87.9	1.4	1.0	88.9	1.4	1.0	88.4
1000	94.3	0.6	1.0	94.8	0.9	1.0	94.6
1250	90.1	0.5	1.0	93.7	0.7	1.0	92.2
1600	88.6	1.1	1.0	88.8	1.1	1.0	88.7
2000	88.0	1.3	1.0	87.7	1.2	1.0	87.9
2500	85.4	1.1	1.0	86.4	0.9	1.0	85.9
3150	80.6	0.9	0.9	81.0	0.9	0.9	80.8
4000	76.5	1.7	0.8	77.4	1.6	0.8	77.0
5000	73.2	2.1	0.7	73.3	2.0	0.7	73.2
A-wtd	98.2			99.2			98.7

Table A3 Cell 7 Passing lane Run 2

Table A3 Cell 7 Passing lane Run 3

	Leading Ed	dge		Trailing Edg	ge		AVG
	IL	PI	Coh	IL	PI	Coh	IL
250	81.3	4.8	0.5	85.8	2.3	0.4	84.1
315	#NUM!	#NUM!	0.6	84.5	3.4	0.6	#NUM!
400	79.4	5.5	0.8	85.1	1.5	0.6	83.1
500	82.6	2.4	0.9	81.6	4.6	0.8	82.1
630	83.5	2.7	1.0	82.6	3.8	0.9	83.1
800	88.3	1.5	1.0	89.1	1.4	1.0	88.7
1000	95.1	0.7	1.0	95.5	1.0	1.0	95.3
1250	90.9	0.6	1.0	93.8	0.8	1.0	92.6
1600	89.0	1.1	1.0	89.0	1.1	1.0	89.0
2000	88.0	1.3	1.0	87.9	1.3	1.0	87.9
2500	85.5	1.2	1.0	86.5	0.9	1.0	86.0
3150	80.8	1.0	0.9	81.3	1.0	0.9	81.1
4000	76.9	1.7	0.8	78.0	1.5	0.8	77.5
5000	73.9	2.1	0.7	73.8	2.0	0.7	73.8
A-wtd	98.7			99.6			99.2

	Leading Ec	lge		Trailing Edg	ge		AVG
	IL	PI	Coh	IL	ΡI	Coh	IL
250	87.0	-0.9	0.4	77.9	9.1	0.5	84.5
315	81.0	3.6	0.5	85.1	1.1	0.6	83.5
400	83.2	1.4	0.7	82.3	2.5	0.7	82.7
500	82.3	1.9	0.9	79.5	4.8	0.8	81.1
630	83.1	2.2	1.0	81.1	4.0	0.9	82.3
800	88.1	1.2	1.0	88.4	1.4	1.0	88.3
1000	93.9	0.8	1.0	93.5	0.9	1.0	93.7
1250	89.8	0.7	1.0	92.9	0.7	1.0	91.6
1600	88.9	1.1	1.0	88.8	1.0	1.0	88.8
2000	88.6	1.2	1.0	88.9	1.0	1.0	88.7
2500	86.2	1.1	1.0	87.6	0.6	1.0	87.0
3150	80.9	0.8	1.0	82.1	0.6	0.9	81.5
4000	77.3	1.3	0.8	78.6	0.9	0.9	78.0
5000	74.1	1.6	0.7	74.1	1.2	0.8	74.1
A-wtd	98.2			98.7			98.5

Table A4 Cell 7 Mid lane Post Grind Run 1

Table A5Cell 7 Midlane Run 2

	Leading Edg	е		Trailing E	dge		AVG
	IL	PI	Coh	IL	PI	Coh	IL
250	83.4	1.7	0.5	82.0	4.1	0.5	82.8
315	81.1	2.6	0.6	70.8	14.3	0.6	78.5
400	82.2	2.1	0.8	81.4	3.3	0.7	81.8
500	82.3	2.4	0.9	81.6	3.4	0.9	81.9
630	84.5	1.9	1.0	83.4	2.7	0.9	84.0
800	88.7	1.0	1.0	88.9	1.1	1.0	88.8
1000	93.8	0.8	1.0	93.5	0.9	1.0	93.7
1250	90.2	0.8	1.0	93.2	0.7	1.0	92.0
1600	89.6	1.1	1.0	88.9	1.1	1.0	89.3
2000	88.6	1.2	1.0	88.9	1.0	1.0	88.8
2500	86.3	1.1	1.0	87.7	0.6	1.0	87.0
3150	80.9	0.8	1.0	82.8	0.4	1.0	82.0
4000	77.1	1.3	0.9	78.6	0.9	0.9	77.9
5000	73.7	1.6	0.8	73.8	1.2	0.8	73.8
A-wtd	98.4			99.0			98.7

	Leading Ec	dge		Trailing Ed	ge		AVG
	IL	PI	Coh	IL	ΡI	Coh	IL
250	87.0	-0.9	0.4	77.9	9.1	0.5	84.5
315	81.0	3.6	0.5	85.1	1.1	0.6	83.5
400	83.2	1.4	0.7	82.3	2.5	0.7	82.7
500	82.3	1.9	0.9	79.5	4.8	0.8	81.1
630	83.1	2.2	1.0	81.1	4.0	0.9	82.3
800	88.1	1.2	1.0	88.4	1.4	1.0	88.3
1000	93.9	0.8	1.0	93.5	0.9	1.0	93.7
1250	89.8	0.7	1.0	92.9	0.7	1.0	91.6
1600	88.9	1.1	1.0	88.8	1.0	1.0	88.8
2000	88.6	1.2	1.0	88.9	1.0	1.0	88.7
2500	86.2	1.1	1.0	87.6	0.6	1.0	87.0
3150	80.9	0.8	1.0	82.1	0.6	0.9	81.5
4000	77.3	1.3	0.8	78.6	0.9	0.9	78.0
5000	74.1	1.6	0.7	74.1	1.2	0.8	74.1
A-wtd	98.2			98.7			98.5

Table A6 Cell 7 Midlane Run 3

Table A7 CELL 8 PL

Run 1

	Leading Edge			Trailing Edg	ge		AVG
	IL	ΡI	Coh	IL	PI	Coh	IL
250	87.1	0.3	0.7	89.8	-1.5	0.6	88.6
315	83.4	3.9	0.8	86.1	2.3	0.7	85.0
400	88.6	1.3	0.9	86.5	1.7	0.8	87.7
500	90.9	1.2	1.0	89.0	2.0	0.9	90.0
630	95.2	1.3	1.0	92.7	1.7	1.0	94.2
800	99.6	0.5	1.0	97.1	0.8	1.0	98.6
1000	95.8	1.1	1.0	96.9	1.0	1.0	96.4
1250	93.1	0.6	1.0	95.0	0.8	1.0	94.1
1600	90.0	0.8	1.0	90.4	0.9	1.0	90.2
2000	87.8	1.2	1.0	87.4	1.2	1.0	87.6
2500	84.7	1.2	1.0	84.4	1.2	1.0	84.5
3150	80.2	1.0	0.9	79.8	1.3	0.9	80.0
4000	76.2	1.6	0.8	75.9	2.1	0.8	76.1
5000	73.7	1.8	0.7	72.8	2.2	0.7	73.3
A-wtd	103.4			102.5			103.0

	Leading Edg	e		Trailing Edge	Э		AVG
	IL	PI	Coh	IL	ΡI	Coh	IL
250	88.0	-0.3	0.7	88.8	0.4	0.7	88.4
315	83.5	4.2	0.8	87.8	2.7	0.8	86.1
400	89.6	1.2	1.0	89.4	2.4	0.9	89.5
500	91.4	1.4	1.0	90.7	1.7	1.0	91.1
630	95.5	1.3	1.0	92.9	1.6	1.0	94.4
800	99.7	0.6	1.0	97.1	0.8	1.0	98.6
1000	96.1	1.1	1.0	97.2	1.0	1.0	96.7
1250	93.1	0.6	1.0	94.8	0.8	1.0	94.0
1600	89.5	0.9	1.0	90.1	0.9	1.0	89.8
2000	87.7	1.2	1.0	87.2	1.2	1.0	87.4
2500	84.7	1.1	1.0	84.5	1.1	1.0	84.6
3150	80.2	0.8	0.9	79.7	1.1	0.9	79.9
4000	76.2	1.3	0.8	75.7	1.8	0.8	76.0
5000	73.5	1.6	0.7	72.5	1.9	0.7	73.0
A-wtd	103.5			102.6			103.1

TABLE A8 CELL 8 PL Run 2

TABLE A9 Cell 8 PL Run 3

	Leading Edg	ge		Trailing Edg	ge		AVG
	IL	PI	Coh	IL	PI	Coh	IL
250	75.8	11.8	0.7	90.1	-1.9	0.6	87.2
315	85.6	2.0	0.8	82.3	6.3	0.7	84.3
400	89.1	1.4	1.0	86.5	2.1	0.8	88.0
500	91.7	1.3	1.0	89.8	1.9	1.0	90.8
630	96.3	1.2	1.0	93.5	1.4	1.0	95.1
800	100.4	0.5	1.0	97.9	0.8	1.0	99.3
1000	96.5	1.0	1.0	97.9	1.0	1.0	97.3
1250	93.5	0.6	1.0	95.6	0.8	1.0	94.7
1600	90.2	0.9	1.0	90.7	0.8	1.0	90.5
2000	88.1	1.1	1.0	87.5	1.2	1.0	87.8
2500	84.9	1.1	1.0	84.8	1.1	1.0	84.8
3150	79.9	1.0	0.9	79.7	1.2	0.9	79.8
4000	75.9	1.7	0.8	75.6	2.1	0.8	75.7
5000	73.7	1.7	0.7	72.4	2.1	0.7	73.1
A-wtd	104.1			103.3			103.7

	Leading Edge	•		Trailing Edg	ge		AVG
	IL	ΡI	Coh	IL	ΡI	Coh	IL
250	82.8	4.5	0.6	82.4	5.1	0.5	82.6
315	87.0	1.4	0.8	89.2	-0.8	0.7	88.2
400	90.3	0.9	1.0	88.2	0.5	0.8	89.4
500	91.5	1.3	1.0	89.7	1.6	1.0	90.7
630	95.8	1.2	1.0	92.9	1.6	1.0	94.6
800	100.3	0.4	1.0	97.5	0.5	1.0	99.1
1000	95.3	0.9	1.0	96.9	0.8	1.0	96.2
1250	92.7	0.5	1.0	94.6	0.8	1.0	93.8
1600	89.4	0.8	1.0	90.1	0.8	1.0	89.7
2000	86.8	1.1	1.0	85.9	1.2	1.0	86.4
2500	83.9	1.1	1.0	83.3	1.3	1.0	83.6
3150	80.2	1.0	0.9	79.4	1.2	0.9	79.8
4000	76.4	1.3	0.8	75.8	1.6	0.8	76.1
5000	73.8	1.8	0.7	72.6	2.0	0.7	73.2
A-wtd	103.6			102.6			103.1

Table A10 Cell 8 DL Run 1

Table A11 Cell 8 DL Run 2

	Leading Edge			Trailing Edge)		AVG
	IL	PI	Coh	IL	ΡI	Coh	IL
250	78.0	9.2	0.7	86.5	1.2	0.6	84.0
315	88.0	0.4	0.9	86.8	1.0	0.8	87.5
400	90.5	1.1	1.0	88.1	0.8	0.9	89.4
500	92.1	1.0	1.0	89.3	1.8	1.0	90.9
630	96.5	1.2	1.0	93.5	1.6	1.0	95.2
800	100.6	0.4	1.0	97.9	0.6	1.0	99.5
1000	96.1	1.0	1.0	97.4	0.9	1.0	96.8
1250	93.1	0.6	1.0	95.1	0.8	1.0	94.2
1600	89.3	0.8	1.0	90.4	0.8	1.0	89.9
2000	87.2	1.1	1.0	86.6	1.1	1.0	86.9
2500	83.9	1.1	1.0	83.6	1.1	1.0	83.8
3150	80.0	0.9	0.9	79.5	1.1	0.9	79.7
4000	76.3	1.4	0.8	75.6	1.6	0.8	75.9
5000	73.9	1.8	0.7	72.5	1.8	0.7	73.2
A-wtd	104.0			103.0			103.5

	Leading Edge	;		Trailing Edg	ge		AVG
	IL	ΡI	Coh	IL	PI	Coh	IL
250	85.4	0.6	0.7	86.9	-0.4	0.6	86.2
315	85.3	2.4	0.9	83.0	4.1	0.8	84.3
400	89.7	1.1	1.0	86.2	1.8	0.9	88.3
500	91.1	0.9	1.0	88.8	1.5	1.0	90.1
630	95.8	1.3	1.0	93.1	1.5	1.0	94.6
800	100.3	0.4	1.0	97.9	0.5	1.0	99.3
1000	95.6	1.0	1.0	97.4	0.9	1.0	96.6
1250	93.1	0.5	1.0	95.0	0.7	1.0	94.1
1600	88.9	0.8	1.0	90.2	0.8	1.0	89.6
2000	87.1	1.1	1.0	86.5	1.1	1.0	86.8
2500	83.7	1.1	1.0	83.5	1.1	1.0	83.6
3150	79.6	0.9	0.9	79.6	1.0	0.9	79.6
4000	75.8	1.3	0.8	75.6	1.4	0.8	75.7
5000	73.3	1.7	0.7	72.1	1.8	0.7	72.8
A-wtd	103.7			102.9			103.3

Table A12 Cell 8 DL Run 3

APPENDIX B POST GRIND & PREGRIND Mainline Ride Quality

Cell Location	Lane	Wheel Path	Pre-grind Record (erd file ref) 9/8/07	Pre-Grind IRI (inch/Mile)	Post Grind IRI (inch/Mile)	Post Grind record (10/22/07) (erd file ref)
Cell 7	Driving	LWP		72.8	48.3	
-		LWP			44.5	
-		LWP			46.5	
-		RWP		78.5	51.9	
		RWP			55.4	
-		RWP			44.2	
Cell 8	Driving	LWP		123.1	70.4	
		LWP			74.1	
		LWP			74.9	
-		RWP		104.8	74.2	
-		RWP			75.4	
-		RWP			75.3	
Cell 7	Passing	LWP		83.3	53.7	
-		LWP			47.5	
-		LWP			50	
		RWP		68	81.7	
		RWP			84.9	
		RWP			73.7	
Cell 8	Passing	LWP		107.9	70.7	
		LWP			55.9	
		LWP			66	
		RWP	1	128	81.7	
		RWP			84.9	
		RWP	1		73.7	

TABLE B1 POST GRIND VS PREGRIND Mainline Ride Quality

Appendix B2 Pregrind Ride Data

Cell7LFLNIwp8907

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	83.3	134.7	3.56

Cell7LFLNrwp8907

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	68.0	117.1	3.72

Cell7RTLNIwp8907

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	72.8	127.4	3.62

Cell7RTLNrwp8907

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	78.5	123.7	3.66

Analysis - Power Spectral Density

Input	Value	Unit
PSD Calculation	Slope	
Use Point Reset	No	
Frequency Averaging	Yes	
Bands Per Octave	12	
Pre-Processor Filter	None	

Wave Number

Wave Length

Cell8LFLNIwp8907

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	107.9	173.2	3.23

Cell8LTLNrwp8907

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	123.0	176.6	3.20

Cell8RTLNIwp8907

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	123.1	186.0	3.13

Cell8RTLNrwp8907

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	104.8	169.0	3.26

Analysis - Power Spectral Density

Input	Value	Unit
PSD Calculation	Elevation	
Use Point Reset	No	
Frequency Averaging	Yes	
Bands Per Octave	12	
Pre-Processor Filter	None	

Wave Number

Wave Length

102207Cell7eRL1

	Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.		48.3	115.3	3.74

102207Cell7eRL2

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	44.5	112.5	3.76

102207Cell7eRL3

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	46.5	100.5	3.88

102207Cell7eRR1

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	51.9	119.8	3.69

102207Cell7eRR2

Ch	annel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.		55.4	117.8	3.71

102207Cell7eRR3

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	44.2	118.4	3.71

102207Cell7PLlwprun1

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	53.7	108.1	3.81

102207Cell7PLIwprun2

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	47.5	95.1	3.93

102207Cell7PLIwprun3

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	50.0	103.9	3.85

102207Cell7PLrwprun1

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	49.9	95.7	3.93

102207Cell7PLrwprun1

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	49.9	95.7	3.93

102207Cell7PLrwprun2

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	43.2	87.8	4.01

102207Cell7PLrwprun3

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	45.7	94.0	3.94

102207Cell8PLlwprun1

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	70.7	173.1	3.23

102207Cell8PLIwprun2

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	75.9	180.8	3.17

102207Cell8PLlwprun3

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	66.0	184.2	3.14

102207Cell8PLrwprun1

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	81.7	202.8	3.00

102207Cell8PLrwprun2

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	84.9	166.1	3.29

102207Cell8PLrwprun3

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	73.7	213.3	2.92

102207Cell8RL1

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	70.4	167.7	3.27

102207Cell8RR3

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	75.3	189.8	3.10

102207Cell8PLIwprun3

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	66.0	184.2	3.14

102207Cell8PLrwprun1

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	81.7	202.8	3.00

102207Cell8PLrwprun2

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	84.9	166.1	3.29

102207Cell8PLrwprun3

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	73.7	213.3	2.92

102207Cell8RL1

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	70.4	167.7	3.27

102207Cell8RL2

Channel Titl	e IRI (in/mi)	PTRN (in/mi)	RN
Elev.	74.1	166.6	3.28

102207Cell8RL3

	Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.		74.9	207.8	2.96

102207Cell8RR1

Channel	Title	RI (in/mi) P	TRN (in/mi) RN	
Elev.	74.	2 198	3.03	

102207Cell8RR2

	Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.		75.4	188.6	3.11

Appendix C ADDITIONAL FRICTION DATA Table C1 Pregrind Friction data

CELL	CONSTRUCT LANE	DAY	1	TIME FN	F	PEAK	SPEED	AIR_TEMP	PVMT_TEMP TIRE_TYPE	EQUIPMENT STA	DATE_UPDA LATITUDE LONGITUDE
	7 1 ML-Drivin	ng 2	23-Jun-94		60				Ribbed	Mn/DOT - 1295 Paven	5-May-06
	7 1 ML-Passi	inį 2	23-Jun-94		58.7				Ribbed	Mn/DOT - 1295 Paven	5-May-06
	7 1 ML-Drivin	ng 20	0-Sep-94		6.7				Ribbed	Mn/DOT - 1295 Paven	5-May-06
	7 1 ML-Passi	inį 20	0-Sep-94		52.5				Ribbed	Mn/DOT - 1295 Paven	5-May-06
	7 1 ML-Drivin	ng 4	4-May-95		1.5				Ribbed	Mn/DOT - 1295 Paven	5-May-06
	7 1 ML-Passi	in; ∠	4-May-95		60.1				Ribbed	Mn/DOT - 1295 Paven	5-May-06
	7 1 ML-Drivin	ng 2	20-Jun-95		0.4				Ribbed	Mn/DOT - 1295 Paven	5-May-06
	7 1 ML-Passi	inį 2	20-Jun-95		63.6				Ribbed	Mn/DOT - 1295 Paven	5-May-06
	7 1 ML-Drivin	ng 2	29-Oct-97	12:17	55.1	74.2	40.3	50) 51 Ribbed	Mn/DOT - 1295 Paven	5-May-06
	7 1 ML-Passi	inį 2	29-Oct-97	12:22	58.3	79.7	39.4	48	3 51 Ribbed	Mn/DOT - 1295 Paven	5-May-06
	7 1 ML-Drivin	ng 1	4-Oct-98	14:11	31	66.5	48.3	40.2	2 51 Smooth	WSDOT	5-May-06
	7 1 ML-Passi	inį 1	4-Oct-98	14:24	46	64	40.3	51	Smooth	WSDOT	5-May-06
	7 1 ML-Passi	inį 1	4-Oct-98	15:01	56.7	87.8	40.3	44	Ribbed	WSDOT	5-May-06
	7 1 ML-Drivin	ng 2	20-Oct-98	10:10	36.2	39.6	40.2	51	Smooth	WSDOT	5-May-06
	7 1 ML-Passi	inį 2	20-Oct-98	10:27	41.9	63.1	40	46	S Smooth	WSDOT	5-May-06
	7 1 ML-Passi	inį 2	20-Oct-98	9:48	53.4	76.4	40.1	41	Ribbed	WSDOT	5-May-06
	7 1 ML-Drivir	ng 2	20-Oct-98	9:33	47.7	69.8	39.7	44	Ribbed	WSDOT	5-May-06
	7 1 ML-Drivir	ng 3	31-Oct-01	13:49	38.1	57.2	40.2	69	55 Ribbed	Mn/DOT - 1295 Paven	5-May-06
	7 1 ML-Passi	inį 3	31-Oct-01	14:39	42.1	64.4	40.3	60	55 Ribbed	Mn/DOT - 1295 Paven	5-May-06
	/ 1 ML-Drivin	ng 3	3-Nov-04	11:12	5/.7	83.3	39.5	30	Ribbed	IVIN/DOT 1295 Paven	5-IVIAY-U6 4516.1657(09343.434910W
	/ 1 ML-Passi	ini i	3-INOV-04	10:42	20.9	85.6	39.7	29		Ma/DOT 4005 D	5-IVIAY-UD 4516.1644/09343.437853W
		ini S	3-INOV-04	10:58	43.3	12.4	40.2	30	Mooth	Mo/DOT 1295 Paven	5-IVIAY-06 4516.1611109343.431128W
		iy 24	4-1Viay-05	10.47	00.0 50 0	09.7	40.5	12	109 / Dibbod	Mp/DOT 1295 Paven	5 May 06 4516 1640 00343 425433W
	7 I ML-Passi 7 1 ML Drivin	llų ∠- ⊳a 1	4-Iviay-05	10.27	00.0 26.2	11.9	40.5	71	100.4 RIDDeu	Mn/DOT 1295 Paven	5-Way-06 4516 1712 00242 445096W
	7 1 ML Door	ig i in 1	0 Apr 06	11.32	20.2 57.5	40.20	40.5	60) Sintouri	Mn/DOT 1295 Faven	5 May 06
	7 1 ML-Fassi 7 1 ML-Drivin	וויין ו סמ 1	0-Apr-06	11.49	55.7	82.81	40.4	50	Pibbed	Mn/DOT - 1295 Faven	5-May-06
	7 1 ML-DHVII 7 1 ML-Dassi	iny 1	9-Apr-00	12.10	40.4	78.95	40.4	59	9 Smooth	Mn/DOT - 1295 Paven	5-May-00 5-May-06 4516 1695 09343 446519W/
	7 1 ML-Drivin	ייי אמ 2	24-Oct-06	1404	35.0	51 97	40.2	43	63 Smooth	Mn/DOT - 1295 Paven	1-Nov-06 4516 1592 09343 426354W/
	7 1 ML-Drivin	יש בי ומ 2	24-Oct-06	1348	59.5	78.6	40.2	42	2 62.8 Ribbed	Mn/DOT - 1295 Paven	1-Nov-06 4516 1647 09343 436862W
	7 1 ML-Passi	in 2	24-Oct-06	1419	59.4	75.81	40	45	64 Ribbed	Mn/DOT - 1295 Paven	1-Nov-06 4516 1588 09343 430087W
	8 1 ML-Drivin	na 2	3-Jun-94		54.3	10.01			Ribbed	Mn/DOT - 1295 Paven	5-Mav-06
	8 1 ML-Passi	in 2	3-Jun-94		56.4				Ribbed	Mn/DOT - 1295 Paven	5-Mav-06
	8 1 ML-Drivin	ng 20	0-Sep-94		54.9				Ribbed	Mn/DOT - 1295 Paven	5-May-06
	8 1 ML-Passi	in 20	0-Sep-94		47				Ribbed	Mn/DOT - 1295 Paven	5-May-06
	8 1 ML-Drivin	ng 4	4-May-95		54.8				Ribbed	Mn/DOT - 1295 Paven	5-May-06
	8 1 ML-Passi	inį 4	4-May-95		57.7				Ribbed	Mn/DOT - 1295 Paven	5-May-06
	8 1 ML-Drivin	ng 2	20-Jun-95		48.5				Ribbed	Mn/DOT - 1295 Paven	5-May-06
	8 1 ML-Passi	inį 2	20-Jun-95		55.4				Ribbed	Mn/DOT - 1295 Paven	5-May-06
	8 1 ML-Drivin	ng 2	29-Oct-97	12:17	44.5	74.1	40.1	50) 51 Ribbed	Mn/DOT - 1295 Paven	5-May-06
	8 1 ML-Passi	inį 2	29-Oct-97	12:21	52.8	76.7	40.4	48	3 51 Ribbed	Mn/DOT - 1295 Paven	5-May-06
	8 1 ML-Drivir	ng 1	4-Oct-98	14:11	25.9	18.7	56.6	40.2	2 55 Smooth	WSDOT	5-May-06
	8 1 ML-Passi	ini 1	4-Oct-98	15:01	54.4	72.8	39.8	44	Ribbed	WSDOT	5-May-06
	o 1 ML-Passi	ini 1	4-Oct-98	14:23	41.3	48	40.2	50	Smooth	WEDOT	5-IVIAY-U6
	o 1 ML-Drivin	ig 1	4-UCt-98	14:47	46.2	66.7	40.2	51	Ribbed	WEDOT	D-IVIAY-Ub
		ig 2	0-000-98	10:10	22.b	30.1	40.4	46	Smooth	WEDOT	D-IVIAY-UD
	o TIVIL-Passi مشتعر AMI	μų 2 20 2	0-001-98	9.40 0.22	১৪.৪ ১৮ হ	70.5	40.1	42	E KIDDed	WSDOT	0-1viay-00 5-May-06
		ing 2	0-0-0-90	9.00 10:07	31.1 21.2	00.7 AE F	40.1	39		WSDOT	5-May-00
	8 1 ML-Passi	יייי ∠ ריסר 2	1-001-90	13:50	∠4.3 38.7	40.5	40.2	40	a STIDUIN	Mn/DOT - 1295 Pavon	5-Max-06
	8 1 MI_Pacei	່າງ ວ in, ຈ	31-Oct-01	14.30	<u>41</u> 2	61 2	40.5	60) 55 Rihhad	Mn/DOT - 1205 Poven	5-May-06
	8 1 ML-Passi	in 3	3-Nov-04	10:42	50.4	85.8	40.1	29	Ribbed	Mn/DOT - 1295 Paven	5-May-06 4516 1110 09343 339638W
	8 1 ML-Passi	in í	3-Nov-04	10:58	29.7	41.6	40.5	30) Smooth	Mn/DOT - 1295 Paven	5-May-06 4516 1080 09343 333602W
	8 1 ML-Drivir	na 3	3-Nov-04	11:12	47.5	73.6	40.5	30) Ribbed	Mn/DOT - 1295 Paven	5-May-06 4516.1122!09343.336604W
	8 1 ML-Passi	in 24	4-Mav-05	10:27	46.8	65.7	40.6	73	3 106.6 Ribbed	Mn/DOT - 1295 Paven	5-May-06 4516.1101 09343.337046W
	8 1 ML-Drivin	ng 24	4-May-05	10:47	42.6	60.4	40.6	72	2 112.8 Ribbed	Mn/DOT - 1295 Paven	5-May-06 4516.1084 09343.329791W
	8 1 ML-Passi	inį 1	9-Apr-06	12:09	28	81.77	39.9	62	2 Smooth	Mn/DOT - 1295 Paven	5-May-06 4516.1279 09343.370323W
	8 1 ML-Passi	in 1	9-Apr-06	11:48	52.6	80.73	40	61	Ribbed	Mn/DOT - 1295 Paven	5-May-06
	8 1 ML-Drivin	ng 1	9-Apr-06	11:32	30.2	37.58	40.5	61	Smooth	Mn/DOT - 1295 Paven	5-May-06 4516.1236 09343.358663W
	8 1 ML-Drivin	ng 1	9-Apr-06	11:08	60.7	81.89	40.5	59	Ribbed	Mn/DOT - 1295 Paven	5-May-06
	8 1 ML-Drivin	ng 2	24-Oct-06	1404	20.9	28.87	40.6	43	61 Smooth	Mn/DOT - 1295 Paven	1-Nov-06 4516.1056 09343.327768W
	8 1 ML-Passi	inį 2	24-Oct-06	1419	47	68.09	40.1	44	63.3 Ribbed	Mn/DOT - 1295 Paven	1-Nov-06 4516.1051:09343.331460W
	8 1 ML-Drivin	ng 2	24-Oct-06	1348	48	64.14	40.3	42	e 61.7 Ribbed	Mn/DOT - 1295 Paven	1-Nov-06 4516.1052 09343.327272W

Appendix D Texture data Table D1Pre-Grind Texture Data

		PREGRIND									
	Measured B	y Bernard Ize	vbekhai			Sand Patc	h ASTM E-	965			
		40/45/07 40/	4.0/07			Cell 7 & 8		T			
		10/15/07, 10/ Wheel Path	16/07 RIIN 1	RUN 2	RUN 3	TIME 12:00	Volmm 3	Texture (m	ASTM F-2	CTM Check	
	LOOATION		482.6	457.2	482.6	474.1	68300	0.39		0.42	0.43
Cell 8	BX1	RR	482.6	482.6	482.6	482.6	68300	0.37		0.5	
Cell 8	BX1	RL	431.8	431.8	431.8	431.8	68300	0.47		0.51	
Cell 8	BX1	LR	431.8	457.2	457.2	448.7	68300	0.43		0.52	
Cell 8	BX1 BX2		431.8	406.4	431.8	423.3	68300	0.49		0.42	
Cell 8	BX2	RL	457.2	457.2	457.2	457.2	68300	0.42		0.42	
Cell 8	BX2	LR	431.8	457.2	431.8	440.3	68300	0.45		0.45	
Cell 8	BX2	LL	431.8	431.8	431.8	431.8	68300	0.47		•	
Cell 8	BX3	RR	482.6	482.6	457.2	474.1	68300	0.39			
Cell 8	BX3 BX3		457.2	482.6	254 431.8	397.9	68300	0.55			
Cell 8	BX3		431.8	457.2	431.8	440.3	68300	0.45			
Cell 8	BX4	RR	508	482.6	457.2	482.6	68300	0.37		0.45	
Cell 8	BX4	RL	482.6	482.6	482.6	482.6	68300	0.37		0.42	
Cell 8	BX4	LR	431.8	406.4	406.4	414.9	68300	0.51		0.49	
	BX4 BX5		431.8	431.8	431.8	431.8	68300	0.47		0.45	
Cell 8	BX5	RL	457.2	457.2	457.2	457.2	68300	0.43			
Cell 8	BX5	LR	431.8	482.6	431.8	448.7	68300	0.43			
Cell 8	BX5	LL	482.6	431.8	431.8	448.7	68300	0.43			
Cell 8	BX6	RR	482.6	508	533.4	508.0	68300	0.34			
	BX6		457 2	<u>508</u> 457.2	457.2	491.1	68300	0.36			
Cell 8	BX6		457.2	457.2	457.2	457.2	68300	0.42			
Cell 8	Bx7	RR	457.2	431.8	431.8	440.3	68300	0.45			
Cell 8	Bx7	RL	457.2	457.2	457.2	457.2	68300	0.42			
Cell 8	Bx7	LR	406.4	406.4	457.2	423.3	68300	0.49			
Cell 8	BX/ BX8		457.2	457.2	431.8	448.7	68300	0.43		0.35	0.30
Cell 7	BX8	RL	482.6	431.8	431.8	448.7	68300	0.30		0.35	0.55
Cell 7	BX8	LR	431.8	457.2	457.2	448.7	68300	0.43		0.54	
Cell 7	BX8	LL	457.2	457.2	482.6	465.7	68300	0.40		0.54	
Cell 7	BX9	RR	508	508	508	508.0	68300	0.34			
Cell 7	BX9		482.6	457.2	457.2	465.7	68300	0.40			
Cell 7	BX9		406.4	406.4	406.4	406.4	68300	0.53			
Cell 7	BX10	RR	508	508	482.6	499.5	68300	0.35		0.39	
Cell 7	B X 1 0	RL	508	508	482.6	499.5	68300	0.35		0.45	
Cell 7	BX10	LR	431.8	457.2	457.2	448.7	68300	0.43		0.55	
Cell 7	BX10 BX11		431.8	431.8	431.8	431.8	68300	0.47		0.55	
Cell 7	BX11	RL	482.6	482.6	482.6	482.6	68300	0.34			
Cell 7	BX11	LR	508	482.6	482.6	491.1	68300	0.36			
Cell 7	BX11	LL	457.2	457.2	508	474.1	68300	0.39			
Cell 7	BX12	RR	482.6	533.4	533.4	516.5	68300	0.33			
Cell 7	BX12		482.6	533 /	508	499.5	68300	0.35			
Cell 7	BX12		457.2	508	304.8	423.3	68300	0.49			
Cell 7	Bx13	RR	482.6	482.6	508	491.1	68300	0.36			
Cell 7	Bx13	RL	482.6	508	508	499.5	68300	0.35			
Cell 7	B x 1 3	LR	482.6	457.2	457.2	465.7	68300	0.40			
Cell 8SH	Bx14		200	482.6 304 9	482.6 304 9	491.1	68300	0.36		0.01	
Cell 8SH	Bx14	RL	330.2	25.4	279.4	211.7	68300	1.94		0.31	
Cell 8SH	B x 1 5	RR	330.2	50.8	304.8	228.6	68300	1.66			
Cell 8SH	B x 1 5	RL	304.8	304.8	304.8	304.8	68300	0.94			
Cell 8SH	Bx16	RR	304.8	330.2	304.8	313.3	68300	0.89			
Cell 85H	BX10	RR	330.2	304.8	228.6	287.9	68300	1.05		0.74	1 03
Cell 8SH	BX17	RL	330.2	279.4	304.8	304.8	68300	0.94		0.74	1.03
Cell 8SH	B x 1 8	RR	330.2	304.8	330.2	321.7	68300	0.84			
Cell 8SH	B x 1 8	RL	304.8	279.4	330.2	304.8	68300	0.94			
Cell 8SH	BX19	RR	330.2	304.8	304.8	313.3	68300	0.89			
	BX19 BX20	K L D D	330.2	304.8	304.8	313.3	68300	0.89		0.77	
Cell 8SH	Bx20	RL	304.8	533.4	254	364.1	68300	0.66			
Cell 8SH	BX21	RR	304.8	279.4	254	279.4	68300	1.11	l .		
Cell 8SH	B X 2 1	RL	330.2	304.8	304.8	313.3	68300	0.89		0.81	

Appendix D Texture data Table D2 Post Grind Textures

POSTGRI	ND									
	Measured	By Bernard	Izevbekha			Sand Patc	h ASTM E-	965		
						Cell 7 & 8	-			
		10/23/2007				Time 12:0	0pm	Temp 50 Deg F	ASTM 2157	Mean
			RUN 1	RUN 2	RUN 3	Average	Vol mm3	Texture (mm)	СТМ	E-965
			254	254	254	254.0	68300	1 35	1.35	1 54
Cell 8	Cell 8	RR	228.6	228.6	254	237.1	68300	1.55	1 43	1.01
	BX1	RI	228.6	228.6	228.6	228.6	68300	1.66	1 45	
	570	I R	203.2	228.6	228.6	220.1	68300	1.80	1.53	
		11	254	228.6	228.6	237.1	68300	1.55	1100	
	BX2	RR	254	254	254	254.0	68300	1.00	1 45	
0010	DAZ	PI	254	254	254	254.0	68300	1.35	1.43	
			254	254	254	254.0	68300	1.35	1.2	
			254	254	254	254.0	68300	1.33	1.32	
	DV2		254	254	254	254.0	68300	1.33	1.43	
Cell 8	БАЗ	KK DI	254	254	254	254.0	68300	1.35		
		KL	228.6	228.6	254	237.1	68300	1.55		
		LR	228.6	228.6	279.4	245.5	68300	1.44		
0	-	LL	228.6	228.6	254	237.1	68300	1.55		
Cell 8	BX4	RR	254	254	228.6	245.5	68300	1.44	1.42	
		RL	254	254	228.6	245.5	68300	1.44	1.3	
		LR	254	228.6	228.6	237.1	68300	1.55	1.52	
			228.6	228.6	228.6	228.6	68300	1.66	1.4	
Cell 8	BX5	RR	228.6	228.6	228.6	228.6	68300	1.66		
		RL	228.6	228.6	228.6	228.6	68300	1.66		
		LR	228.6	228.6	228.6	228.6	68300	1.66		
		LL	228.6	228.6	228.6	228.6	68300	1.66		
Cell 8	BX6	RR	228.6	228.6	228.6	228.6	68300	1.66		
		RL	228.6	228.6	228.6	228.6	68300	1.66		
		LR	228.6	228.6	228.6	228.6	68300	1.66		
		LL	228.6	228.6	228.6	228.6	68300	1.66		
Cell 8	Bx7	RR	228.6	228.6	228.6	228.6	68300	1.66		
		RL	228.6	228.6	228.6	228.6	68300	1.66		
		LR	228.6	228.6	228.6	228.6	68300	1.66		
		LL	228.6	203.2	228.6	220.1	68300	1.80		
Cell 7	BX8	RR	304.8	304.8	304.8	304.8	68300	0.94	1.1	0.96
		RL	304.8	304.8	304.8	304.8	68300	0.94	1 24	
		I R	304.8	304.8	279.4	296.3	68300	0.99	1.09	
		11	304.8	330.2	304.8	313.3	68300	0.89	1 09	
Cell 7	BX9	RR	304.8	330.2	304.8	313.3	68300	0.00	1.00	
00117	573	RI	279.4	304.8	304.8	206.3	68300	0.03		
			204.8	304.0	204.8	290.3	68300	0.99		
			304.0	204.0	304.0	204.0	68300	0.94		
	BV10		304.0	304.0	304.0	207.0	68300	1.05	1.03	
Cell 7	BATU	KK DI	304.8	279.4	279.4	287.9	68300	1.05	1.03	
			304.0	279.4	279.4	287.9	68300	1.05	1.11	
		LR	304.8	304.8	304.8	304.8	68300	0.94	0.94	
0	B ¥ 4 4		304.8	304.8	279.4	296.3	68300	0.99	1.11	
Cell 7	BX11	RR DI	304.8	279.4	279.4	287.9	68300	1.05		
		RL	279.4	279.4	279.4	279.4	68300	1.11		
		LR	304.8	304.8	304.8	304.8	68300	0.94		
		LL	279.4	304.8	330.2	304.8	68300	0.94		
Cell 7	BX12	KR	304.8	304.8	330.2	313.3	68300	0.89		
		KL	304.8	304.8	330.2	313.3	68300	0.89		
	1	LR	304.8	304.8	279.4	296.3	68300	0.99		
			330.2	304.8	304.8	313.3	68300	0.89		
Cell 7	Bx13	RR	279.4	304.8	304.8	296.3	68300	0.99		
		RL	304.8	304.8	304.8	304.8	68300	0.94		
		LR	330.2	304.8	304.8	313.3	68300	0.89		
		LL	279.4	279.4	304.8	287.9	68300	1.05		
Cell 8SH	Bx14	RR	228.6	254	228.6	237.1	68300	1.55	1.7	
		RL	228.6	228.6	228.6	228.6	68300	1.66		
Cell 8SH	Bx15	RR	228.6	228.6	228.6	228.6	68300	1.66		
		RL	228.6	228.6	228.6	228.6	68300	1.66		
Cell 8SH	Bx16	RR	228.6	228.6	228.6	228.6	68300	1.66		
		RL	228.6	228.6	228.6	228.6	68300	1.66		
Cell 8SH	BX17	RR	228.6	228.6	228.6	228.6	68300	1.66	1.72	1.54
		RL	254	254	203.2	237.1	68300	1.55		
Cell 8SH	Bx18	RR	228.6	228.6	254	237.1	68300	1.55		
		RL	228.6	254	254	245.5	68300	1.44		
Cell 8SH	BX19	RR	228.6	254	254	245.5	68300	1.44		
	1	RL	228.6	228.6	254	237 1	68300	1.55	1.52	
Cell 8SH	Bx20	RR	228.6	254	254	245 5	68300	1 44		
00110011	2.420	RI	254	228.6	228 6	237 1	68300	1.44		
Cell 8SH	BX21	RR	228.6	228.6	254	237.1	68300	1.55		
501 5011	5/121	RI	228.6	220.0	228.6	227.1	68300	1.55	15	
	1	.				220.0		1.00	1.5	

Figure E1 MnROAD Mainline and Low Volume Road

Analysis - Ride Statistics

TS31	1107	
------	------	--

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elevation	63.5	88.7	4.00

TS111107

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elevation	70.8	85.7	4.03

TS121107

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elevation	70.9	97.5	3.91

TS211107

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elevation	65.6	89.1	3.99

TS221107

Channel Title	IRI (in/mi)	PTRN	RN
		(in/mi)	
Elevation	67.2	94.2	3.94

TS321107

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elevation	63.6	94.3	3.94

Cell 37 Pregrind REPORT (TESTED 6/18/07)

Cell 37 NB TS31

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	65.6	126.6	3.63

Cell 37 NB TS32

Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	64.9	128.9	3.61

Cell 37 NB TS33			
Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	64.7	127.5	3.62
Cell 37 NB TS34			
Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	64.7	128.0	3.62
Cell 37 NB TS35			
Channel Title	IRI (in/mi)	PTRN (in/mi)	RN
Elev.	63.9	125.2	3.64

Analysis - Power Spectral Density

Input	Value Unit
PSD Calculation	Slope
Use Point Reset	No
Frequency Averaging	Yes
Bands Per Octave	12
Pre-Processor Filter	None

Wave Number

Wave Length

Appendix Table F2 Texture Data Cell 37

			Measur	ed By	Bernard Izev		Sand Patch ASTM E-965						
					Arash Moin			Cell 37					
				Time 10:0	0am	Temp 65 Deg F	:						
Station	DIA1		DIA 2		DIA 3	RUN 1	RUN 2	RUN 3	Average	Vol mm3	Texture (mm)	REMARKS	
TX9 TS3		16		16	15	408	408	382.5	399.5	68300	0.545		
TX9 TS1		13		14	15	331.5	357	382.5	357	68300	0.683		
TX8TS1		13		13	12	331.5	331.5	306	323	68300	0.834	-	
TX7 TS1		12.5		13	14	318.75	331.5	357	335.75	68300	0.772	2	
TX6 TS1		17		15	14	433.5	382.5	357	391	68300	0.569)	
TX5 TS1		17.5		19.5	19.5	446.25	497.25	497.25	480.25	68300	0.377		
TX4 TS1		14		15	16	357	382.5	408	382.5	68300	0.595		
TX3 TS1		12		15	14	306	382.5	357	348.5	68300	0.716	;	
TX2 TS1		13		14	15	331.5	357	382.5	357	68300	0.683		
TX 1TS1		15		16	16	382.5	408	408	399.5	68300	0.545		
											0.632	2	

			Arash Date 6	Moin /22/07		Sand Pato Cell 37	h Test	Time 11:1	0 AM		
Station	DIA1	DIA 2	DIA 3	1	RUN 1	RUN 2	RUN 3	Average	Vol mm3	Texture (mm)	REMARKS
TX9 TS3		11	11	10.5	280.5	280.5	267.75	276.25	68300	1.140	Closest to middle yellow line
TX8 TS3		11.5	11.5	12	293.25	293.25	306	297.5	68300	0.983	
TX7 TS3		11	10.5	10.5	280.5	267.75	267.75	272	68300	1.176	i i i i i i i i i i i i i i i i i i i
TX6 TS3		10	11	10.5	255	280.5	267.75	267.75	68300	1.214	
TX5 TS3		10.5	10.5	9	267.75	267.75	229.5	255	68300	1.338	
TX4 TS3		10.5	10	10.5	267.75	255	267.75	263.5	68300	1.253	
TX3 TS3		10	9	9	255	229.5	229.5	238	68300	1.536	
TX2 TS3		10	9	8.5	255	229.5	216.75	233.75	68300	1.592	
TX1 TS3		9	10	10	229.5	255	255	246.5	68300	1.432	
										1.296	
Station	DIA1	DIA 2	DIA 3		RUN 1	RUN 2	RUN 3	Average	Vol mm3	Texture (mm)	REMARKS
TX9 TS2		11	12	12.5	280.5	306	318.75	301.75	68300	0.956	
TX8 TS2		9	9.5	9.5	229.5	242.25	242.25	238	68300	1.536	2nd closest to middle yellow line
TX7 TS2		9	9	9	229.5	229.5	229.5	229.5	68300	1.652	
TX6 TS2		9.5	10.5	10.5	242.25	267.75	267.75	259.25	68300	1.295	
TX5 TS2		10	11	11.5	255	280.5	293.25	276.25	68300	1.140	
TX4 TS2		12	12	12.5	306	306	318.75	310.25	68300	0.904	
TX3 TS2		10.5	10	10	267.75	255	255	259.25	68300	1.295	
TX2 TS2		11	10	10	280.5	255	255	263.5	68300	1.253	
TX1 TS2		10	9	9.5	255	229.5	242.25	242.25	68300	1.483	
										1.279	
Station	DIA1	DIA 2	DIA 3		RUN 1	RUN 2	RUN 3	Average	Vol mm3	Texture (mm)	REMARKS
TX9 TS1		12	13	12.5	306	331.5	318.75	318.75	68300	0.856	3rd closest to middle yellow line
TX8 TS1		12	12	13	306	306	331.5	314.5	68300	0.880	
YX7 TS1		12	12.5	12.5	306	318.75	318.75	314.5	68300	0.880	
TX6 TS1		12	13	13	306	331.5	331.5	323	68300	0.834	
TX5 TS1		12	12.5	12.5	306	318.75	318.75	314.5	68300	0.880	
TX4 TS1		12	12	12	306	306	306	306	68300	0.929	
TX3 TS1		12	12	12.5	306	306	318.75	310.25	68300	0.904	
TX2 TS1		13	12.5	13	331.5	318.75	331.5	327.25	68300	0.812	
TX1 TS1		13	12.5	12.5	331.5	318.75	318.75	323	68300	0.834	
										0.868	
Station	DIA1	DIA 2	DIA 3	1	RUN 1	RUN 2	RUN 3	Average	Vol mm3	Texture (mm)	REMARKS
TX9 TS4		13	13.5	13	331.5	344.25	331.5	335.75	68300	0.772	4th closest to(furthest from middle yellow li
TX8 TS4		13.5	13.5	14	344.25	344.25	357	348.5	68300	0.716	
TX7 YS4		13	12.5	13	331.5	318.75	331.5	327.25	68300	0.812	
TX6 TS4		12.5	12.5	13	318.75	318.75	331.5	323	68300	0.834	
TX5 TS4		15	15	15.5	382.5	382.5	395.25	386.75	68300	0.582	
		14	15	14.5	357	382.5	369.75	369.75	68300	0.636	
TX4 TS4											
TX4 TS4 TX3 TS4		12	11.5	12	306	293.25	306	301.75	68300	0.956	
TX4 TS4 TX3 TS4 TX2 TS4		12 12	11.5 10	12 12	306 306	293.25 255	306 306	301.75 289	68300 68300	0.956 1.042	
TX4 TS4 TX3 TS4 TX2 TS4 TX2 TS4 TX1 TS4		12 12 14	11.5 10 13	12 12 13	306 306 357	293.25 255 331.5	306 306 331.5	301.75 289 340	68300 68300 68300	0.956 1.042 0.753	

Friction # ASTM E-274 Cell 37

			FRICTION #											
Condition	Date	Test Code	Ribbed1	Ribbed2	Ribbed3	Ribbed4	Smooth1	Smooth2	Smooth3	Smooth4				
Pre -Grind	6/18/2007	PreGrind	64.5	65.7	64.9	60.4	48.1	41	42.9	40.8				
Post Grind	6/22/2007	TS1	50.7	49.7	50.3	48.8	48.6	48	47.7	46				
Post Grind	6/22/2007	TS2	51.2	49.4	52.7	48.7	52.9	49.6	51.5	46.7				
Post Grind	6/22/2007	TS3	57.6	60.2	56.5	60	55.9	55.5	51.2	50.7				
Post Grind	6/22/2007	TS4	65.1	65.1	66.3	65.5	46.9	43.3	47.9	39.1				

Appendix TABLE F3 Friction Data from Cell 37

	TEXTURE X 10 mm												
Test Code	Location1	Location2	Location3	Location4	Location5	Location6	Location7	Location8	Location9	Location10	Location11	Location12	Mean
PreGrind Ribbed	0.610	0.610	0.635	0.711	0.635	0.660	0.991	0.889	1.016	0.762	0.660	1.168	0.779
PregrindSmooth	0.889	0.889	0.889	1.067	1.168	1.397	0.838	0.762	0.762	0.838	0.686	0.762	0.912
TS1 Ribbed	0.787	0.483	0.432	0.483	0.483	0.356	0.686	0.813	0.660	0.559	0.483	0.508	0.561
TS1Smooth	0.838	0.838	0.711	0.432	0.483	0.533	0.711	0.686	0.610	0.610	0.610	0.635	0.641
TS2 Ribbed	0.838	0.838	0.838	0.483	0.406	0.406	0.635	0.610	0.457	0.533	0.406	0.406	0.572
TS2 Smooth	0.737	0.737	0.737	0.711	0.787	0.737	0.711	0.914	0.940	0.762	0.660	0.711	0.762
TS3 Ribbed	0.635	0.406	0.406	0.406	0.483	0.508	0.559	0.533	0.737	0.762	0.660	0.533	0.552
TS3 Smooth	0.965	0.940	1.397	0.584	0.711	0.711	0.838	0.864	0.838	0.711	0.660	1.041	0.855
TS4 Ribbed	1.143	1.041	1.397	0.584	0.559	0.686	0.787	0.787	0.838	0.838	0.483	0.483	0.802
TS4 Smooth	1.118	1.118	0.991	0.991	0.838	0.762	0.940	1.016	1.067	1.118	0.711	0.686	0.946

Appendix Table F4 Texture measurements from Skid Truck